In silico screening of modulators of magnesium dissolution

Abstract

The vast number of small molecules with potentially useful dissolution modulating properties (inhibitors or accelerators) renders currently used experimental discovery methods time- and resource-consuming. Fortunately, emerging computer-assisted methods can explore large areas of chemical space with less effort. Here we show how density functional theory calculations and machine learning methods can work synergistically to generate robust and predictive models that recapitulate experimentally-derived corrosion inhibition efficiencies of small organic compounds for pure magnesium. We further validate our methods by predicting a priori the corrosion modulation properties of seven hitherto untested small molecules and confirm the prediction in subsequent experiments.

Avatar
Christian Feiler
Postdoc & MLE-Koordinator

Atomistische Simulation & Modellierung, Entwicklung von Quantitativen Struktur-Eigenschafts-Beziehungsmodellen

Avatar
Tim Würger
Doktorand

Computergestützte Materialwissenschaften, Atomistische Simulation & Modellierung, Maschinelles Lernen und datengetriebene Ansätze für Materialmodellierung & -design

Avatar
Robert Meißner
Professor

Molekulardynamische Simulationen von Grenzflächen, Berechnung freier Energien biomolekularer und elektrochemischer Systeme, atomistische Betrachtung der Magnesiumkorrosion, Entwicklung datengetriebener Modelle zur Indentifikation von (umweltfreundlichen) Degradationsmodulatoren

Avatar
Mikhail Zheludkevich
Professor

Elektrochemie, Multifunktionale Oberflächen & Aktiver Schutz von Leichtmetallen, Multi-Material-Systeme

Related