Predicting the Inhibition Efficiencies of Magnesium Dissolution Modulators using Sparse Machine Learning Models

Abstract

The degradation behaviour of magnesium and its alloys can be tuned by small organic molecules. However, an automatic identification of effective organic additives within the vast chemical space of potential compounds needs sophisticated tools. Herein, we propose two systematic approaches of sparse feature selection for identifying molecular descriptors that are most relevant for the corrosion inhibition efficiency of chemical compounds. One is based on the classical statistical tool of analysis of variance, the other one based on random forests. We demonstrate how both can—when combined with deep neural networks—help to predict the corrosion inhibition efficiencies of chemical compounds for the magnesium alloy ZE41. In particular, we demonstrate that this framework outperforms predictions relying on a random selection of molecular descriptors. Finally, we point out how autoencoders could be used in the future to enable even more accurate automated predictions of corrosion inhibition efficiencies.

Avatar
Elisabeth Schiessler
Doktorandin

Genetische Algorithmen, Maschinelles Lernen im Bereich Materialwissenschaften, Autoencoder

Avatar
Tim Würger
Doktorand

Computergestützte Materialwissenschaften, Atomistische Simulation & Modellierung, Maschinelles Lernen und datengetriebene Ansätze für Materialmodellierung & -design

Avatar
Robert Meißner
Professor

Molekulardynamische Simulationen von Grenzflächen, Berechnung freier Energien biomolekularer und elektrochemischer Systeme, atomistische Betrachtung der Magnesiumkorrosion, Entwicklung datengetriebener Modelle zur Indentifikation von (umweltfreundlichen) Degradationsmodulatoren

Avatar
Christian Cyron
Professor

Computational Engineering, Maschinelles Lernen in Maschinenbau, Materialforschung und Medizin

Avatar
Mikhail Zheludkevich
Professor

Elektrochemie, Multifunktionale Oberflächen & Aktiver Schutz von Leichtmetallen, Multi-Material-Systeme

Avatar
Christian Feiler
Postdoc & MLE-Koordinator

Atomistische Simulation & Modellierung, Entwicklung von Quantitativen Struktur-Eigenschafts-Beziehungsmodellen